### DR. MRS. SMITA SURESH GIRI

### <u>GOPAL KRUSHNA GOKHALE COLLEGE</u> <u>KOLHAPUR.</u>

**CHEMISTRY DEPARTMENT** 

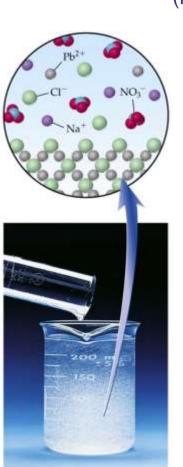
**26 AUG 2018** 

#### Introduction

- 1.) Gravimetric Analysis:
  - (i) A technique in which the amount of an analyte in a sample is determined by converting the analyte to some product
    - Mass of product can be easily measured
  - (ii) Analyte: the compound or species to be analyzed in a sample
  - (iii) Overall, gravimetry sounds simple.
    - Advantages when done correctly is highly accurate (most accurate of all time); requires minimal equipment
    - Disadvantage requires skilled operator, slow.

Convert analyte into a solid, filter, weigh, calculate via a mole map

#### Introduction


#### 1.) Gravimetric Analysis:

(iii) Example:

Determination of lead (Pb+2) in water



- By adding excess Cl<sup>-</sup> to the sample, essentially all of the Pb<sup>+2</sup> will precipitate as PbCl<sub>2</sub>.
- Mass of PbCl<sub>2</sub> is then determined.
  - used to calculate the amount of Pb+2 in original solution



#### Introduction

- 1.) Gravimetric Analysis:
  - (v) Example:
    - What is the %KCl in a solid if 5.1367 g of solid gives rise to 0.8246 g AgCl?

```
Cl^- + Ag^+ \rightarrow AgCl(s)
```

### Types of Gravimetric Analysis

- 1.) Combustion Analysis
- 2.) Precipitation

### Combustion Analysis

- Common method used to determine the amount of carbon and hydrogen
- One modified method (<u>Dumas Method</u>) can also determine the amount of nitrogen in a sample
- Technique is accurate and usable with a wide range of compounds.
  - Often one of the first methods used to characterize a new compound

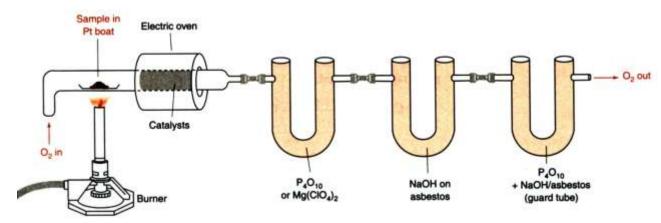
### Combustion Analysis

#### 1.) Principals:

- (i) Sample is heated in presence of Oxygen (O<sub>2</sub>)
  - Converts carbon in sample to CO<sub>2</sub>
  - Converts hydrogen in sample to H<sub>2</sub>O

$$C_{\text{(sample)}} + O_2 \xrightarrow{\Delta} CO_2$$

$$2H_{\text{(sample)}} + \frac{1}{2}O_2 \xrightarrow{\Phi} H_2O$$


- Pt, CuO, PbO<sub>2</sub>, or MnO<sub>2</sub> is used as a catalyst in this process
- (ii) As CO<sub>2</sub> and H<sub>2</sub>O form, leave the sample and flow through a series of chambers
  - Chambers contain chemicals that bind one or both of these products
  - Example:
    - P<sub>4</sub>O<sub>10</sub> can be used to absorb H<sub>2</sub>O
    - Ascarite can be used to absorb CO<sub>2</sub>
    - Ascarite Sodium Hydroxide Coated Non-Fibrous Silicate



**Ascarite** 

### Combustion Analysis

#### 2.) Apparatus:



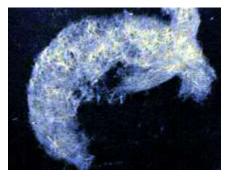
- (i) After the sample is completely burned:
  - Remove P<sub>4</sub>O<sub>10</sub> and Ascarite cartridges and weigh
  - If C and H are present in sample, both cartridges will increase in mass
- (ii) Amount of C and H in the original sample is determined from:
  - Knowing the amount of sample burned
  - Change in weight in each cartridge

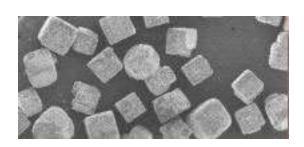
### Combustion Analysis

#### 2.) Example Calculation:

A mixture weighing 7.290 mg contained only cyclohexane,  $C_6H_{12}$  (FM 84.159), and oxirane,  $C_2H_4O$  (FM 44.053). When the mixture was analyzed by combustion analysis, 21.999 mg of  $CO_2$  (FM 44.010) was produced.

Find the weight percent of oxirane in the mixture.


### Precipitation Analysis


1.) Principals:

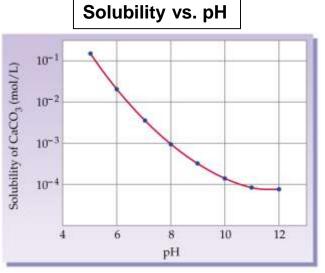
(i)

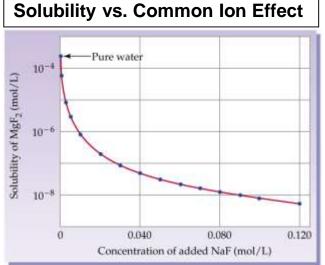
Reagent + Analyte ——— Solid Product (collect and measure mass)

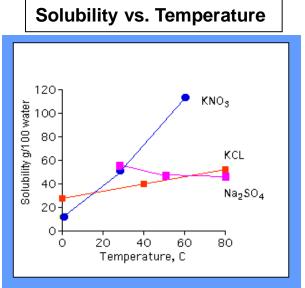
- (ii) Desired Properties of Solid Product
  - Should be very insoluble
  - Easily filterable (i.e., large crystals)
  - Very Pure
  - Known and constant composition









Few precipitates have all of these properties, but in most cases appropriate techniques can help optimize these qualities


### Precipitation Analysis

#### 2.) Solubility:

- (i) The solubility of a precipitate can be decreased by:
  - Decreasing temperature of solution
  - Using a different solvent
    - usually a less polar or organic solvent (like dissolves like)







#### Precipitation Analysis

#### 1.) Gravimetric Analysis:

(vi) Governed by equilibrium: AgCl  $K_{sp} = 1.8 \times 10^{-10}$ 

Solubility of AgCl = 
$$[Ag^+]$$
 +  $[AgCl]$  +  $[AgCl^{2-}]$ 

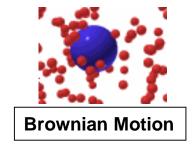
$$Cl^{-} + Ag^{+} \rightarrow AgCl(ag)$$
 ion pair formation  $K_{o} = \frac{[AgCl]}{[Ag^{+}]Cl^{-}}$ 

AgCl(aq) 
$$\rightarrow$$
 AgCl(s) intrinsic solubility  $K_i = [AgCl]$ 

AgCl +Cl<sup>-</sup> 
$$\rightarrow$$
 AgCl<sup>2-</sup> complex ion formation  $K_f = \frac{[AgCl^{2-}]}{[AgCl][Cl^{-}]}$ 

$$S = \frac{[AgCl]}{[Cl^{-}]}K_{o} + K_{i} + \frac{[AgCl]}{[Cl^{-}]}K_{f} = \frac{K_{o}}{[Cl^{-}]K_{o}} + K_{i} + K_{f}K_{o}[Cl^{-}]$$

### Precipitation Analysis


- **Filterability:** 3.)
  - (i) Want product to be large enough to collect on filter:
    - Doesn't clog filter
    - Doesn't pass through filter
  - (ii) Best Case: Pure Crystals



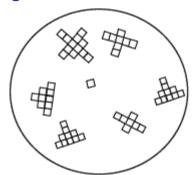




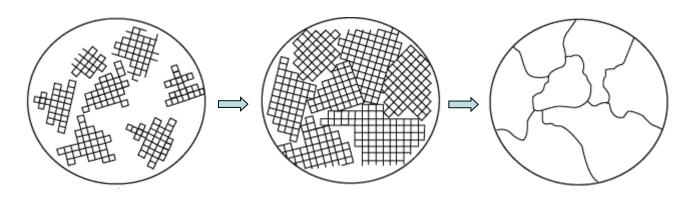
- Difficult to filter due to small size
- Tend to stay in solution indefinitely → suspended by Brownian motion - usually 1-100 nm in size

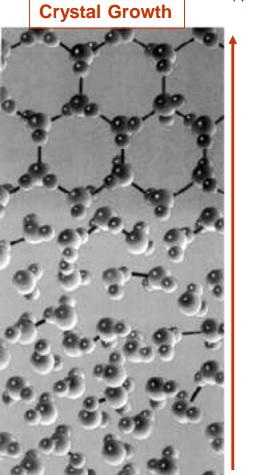





Whether crystals or colloids are obtained depends on conditions used in the precipitation

#### Precipitation Analysis


### 4.) Process of Crystal Growth:

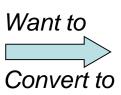

(i) Two Phases in Crystal Growth

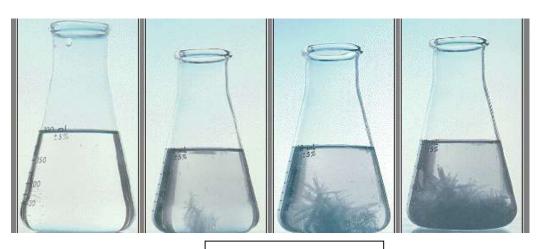
<u>Nucleation</u> – molecules in solution come together randomly and form small aggregates



<u>Particle growth</u> – addition of molecules to a nucleus to form a crystal







#### Precipitation Analysis

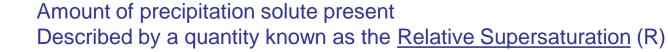
#### 4.) Process of Crystal Growth:

- (ii) Nucleation and Particle growth always compete for molecules/ions being precipitated.
  - If nucleation is faster than particle growth:
    - a large number of small aggregates occur giving colloidal suspensions
  - If particle growth is faster than nucleation:
    - only a few, large particles form giving pure crystals





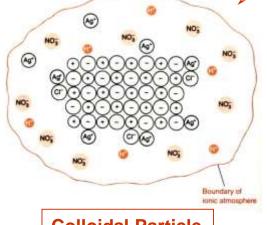



**Colloidal suspension** 

**Crystal formation** 

#### Precipitation Analysis

#### 4.) Process of Crystal Growth:


(iii) Rates of nucleation vs. particle growth depends on:



$$R = \frac{(Q-S)}{S}$$

S = concentration of solute in solution <u>at equilibrium</u>

Q = actual concentration of solute added to solution



**Colloidal Particle** 

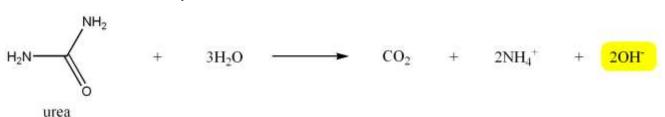
#### (iv) If R is large,

- Large relative amount of solute in solution
- Favors nucleation and colloid formation
- (v) In gravimmetry based on precipitations, a small value of R (~1.0) is desired in order to favor large crystal growth

#### Precipitation Analysis

- 4.) Process of Crystal Growth:
  - (vi) Methods for Minimizing R
    - 1. Increase temperature of solution
      - increases S
      - increase amount of solute that can be in solution at equilibrium
    - Add precipitating reagent (precipitant) slowly while vigorously mixing solution
      - avoids local high concentrations of solution
      - avoid nucleation and colloid formation
    - 3. Keep volume of solution large
      - keep concentration of analyte and precipitating reagent low
    - 4. Control S through chemical means
      - by adjusting pH
      - adding complexing agents
      - example: precipitation of Ca<sup>2+</sup> with C<sub>2</sub>O<sub>4</sub><sup>2-</sup>

Note: As pH ([H+]) changes, the solubility of CaC<sub>2</sub>O<sub>4</sub> changes


$$\begin{cases}
C_2O_4^{2-} + H^+ & HC_2O_4^{-1} \\
Ca^{2+} + C_2O_4^{2-} & K_{sp} & CaC_2O_4(s)
\end{cases}$$

#### Precipitation Analysis

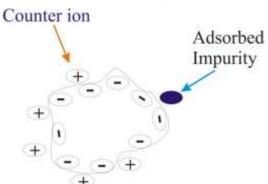
#### 5.) Homogeneous Precipitation:

- (i) Precipitating agent is generated directly in solution by means of a chemical reaction.
  - Ideal case for precipitations
    - agent is generated uniformly throughout the solution
    - excess are avoided

#### Example:



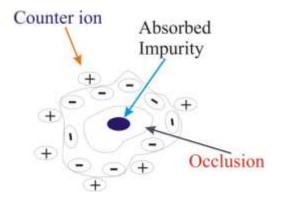
As  $OH^-$  is produced, pH gradually increases  $\rightarrow$  precipitates a number of compounds ( $CaC_2O_4$ )


#### Precipitation Analysis

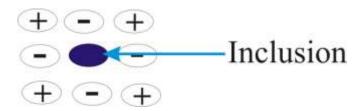
#### 5.) Miscellaneous Notes on Precipitation:

- (i) Most ionic compounds are precipitated in the presence of some added electrolyte
  - e.g. 0.1 M HNO<sub>3</sub>
  - Allows the small nucleation aggregates to better overcome any charge repulsion and promotes particle growth
- (ii) Impurities may also be present in the crystal
  - Known as co-precipitation
  - Creates errors in gravimetric analysis

#### (iii) Types of Impurities


Impurities adsorbed to crystal surface



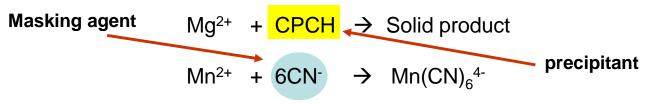

#### Precipitation Analysis

### 5.) Miscellaneous Notes on Precipitation:

- (iii) Types of Impurities
  - Impurities absorbed or trapped within pockets in the crystal
  - Occlusion



- Impurities similar to the analyte or reagent
- Impurities placed in the crystal instead of analyte




#### Precipitation Analysis

- 5.) Miscellaneous Notes on Precipitation:
  - (iv) Impurities are undesirable
    - Change the chemical composition of the precipitate
    - Causes errors in the analysis
  - (v) Ways to Minimize Impurities
    - 1. Keep R small
      - large pure crystals decrease occlusions and adsorbed impurities
    - <u>Digestion</u> allowing precipitate to stand in mother liquor (precipitating solution), usually while being heated
      - promotes removal of impurities from crystal
      - increases size of crystals
    - Wash precipitate, redissolve the precipitate in fresh solvent and reprecipitate
      - helps decrease all types of impurities
    - 4. Add a <u>masking agent</u> to solution
      - keeps impurities from precipitating, but not analyte



Color → Impurity



#### Precipitation Analysis

#### 5.) Miscellaneous Notes on Precipitation:



- (vi) Washing Precipitates
  - Precipitates from ionic compounds
    - need electrolyte in wash solution
    - keep precipitate from breaking up and redissolving (peptization)
  - Electrolyte should be volatile
    - removed by drying
    - HNO<sub>3</sub>, HCI, NH<sub>4</sub>, NO<sub>3</sub>, etc.
  - Example:

AgCl(s) should not be washed with H<sub>2</sub>O, instead wash with dilute HNO<sub>3</sub>

#### (vii) Drying/Igniting Precipitates



- adsorbed from the air (i.e. hygroscopic)
- Precipitates are <u>dried</u> for accurate, stable mass measurements
- Precipitates are also <u>ignited</u> to convert to a given chemical form

Fe(HCO)<sub>3</sub> · nH<sub>2</sub>O(s) 
$$\frac{850^{\circ}\text{C}}{1 \text{ hr}}$$
 Fe<sub>2</sub>O<sub>3</sub>(s) + xCO<sub>2</sub> + yH<sub>2</sub>O

#### Scope of Gravimetric Analysis

- 1.) Accurate
- 2.) Inexpensive
  - Only major equipment is balance
- 3.) Method is more tedious than other approaches
  - must carefully consider how to minimize potential interferences

| Species<br>analyzed | Precipitated form                                      | Form weighed                                                            | Interfering species                                                                                                          |
|---------------------|--------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| K+                  | KB(C,H,),                                              | KB(C <sub>6</sub> H <sub>5</sub> ) <sub>4</sub>                         | NH <sub>4</sub> , Ag <sup>+</sup> , Hg <sup>2+</sup> , Tl <sup>+</sup> , Rb <sup>+</sup> , Cs <sup>+</sup>                   |
| Mg2+                | Mg(NH <sub>4</sub> )PO <sub>4</sub> -6H <sub>2</sub> O | Mg <sub>2</sub> P <sub>2</sub> O <sub>2</sub>                           | Many metals except Na+ and K+                                                                                                |
| Ca <sup>2+</sup>    | CaC <sub>2</sub> O <sub>4</sub> ·H <sub>2</sub> O      | CaCO <sub>3</sub> or CaO                                                | Many metals except Mg2+, Na+, K+                                                                                             |
| Ba <sup>2+</sup>    | BaSO <sub>4</sub>                                      | BaSO <sub>4</sub>                                                       | Na+, K+, Li+, Ca2+, Al3+, Cr3+, Fe3+, Sr2+, Pb2+, NO <sub>1</sub>                                                            |
| Ti <sup>4+</sup>    | TiO(5,7-dibromo-8-<br>hydroxyquinoline) <sub>2</sub>   | Same                                                                    | Fe <sup>3+</sup> , Zr <sup>4+</sup> , Cu <sup>2+</sup> , C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> , citrate, HF           |
| VO}-                | Hg <sub>3</sub> VO <sub>4</sub>                        | V2O5                                                                    | CI-, Br-, I-, SO2-, CrO2-, AsO2-, PO2-                                                                                       |
| Cr3+                | PbCrO <sub>4</sub>                                     | PbCrO <sub>4</sub>                                                      | Ag+, NH <sub>4</sub>                                                                                                         |
| Mn <sup>2+</sup>    | Mn(NH <sub>4</sub> )PO <sub>4</sub> ·H <sub>2</sub> O  | Mn <sub>2</sub> P <sub>2</sub> O <sub>2</sub>                           | Many metals                                                                                                                  |
| Fe3+                | Fe(HCO <sub>2</sub> ) <sub>1</sub>                     | Fe <sub>2</sub> O <sub>3</sub>                                          | Many metals                                                                                                                  |
| Co <sup>2+</sup>    | Co(1-nitroso-2-naphtholate) <sub>3</sub>               | CoSO <sub>4</sub> (by reaction<br>with H <sub>2</sub> SO <sub>4</sub> ) | Fe <sup>3+</sup> , Pd <sup>2+</sup> , Zr <sup>4+</sup>                                                                       |
| Ni2+                | Ni(dimethylglyoximate)2                                | Same                                                                    | Pd2+, Pt2+, Bi3+, Au3+                                                                                                       |
| Cu2+                | CuSCN                                                  | CuSCN                                                                   | NH <sub>4</sub> , Pb <sup>2+</sup> , Hg <sup>2+</sup> , Ag <sup>+</sup>                                                      |
| Zn2+                | Zn(NH <sub>4</sub> )PO <sub>4</sub> ·H <sub>2</sub> O  | Zn <sub>2</sub> P <sub>2</sub> O <sub>2</sub>                           | Many metals                                                                                                                  |
| Ce4+                | Ce(IO <sub>1</sub> ) <sub>4</sub>                      | CeO <sub>2</sub>                                                        | Th4+, Ti4+, Zr4+                                                                                                             |
| Al3+                | Al(8-hydroxyquinolate) <sub>3</sub>                    | Same                                                                    | Many metals                                                                                                                  |
| Sn4+                | Sn(cupferron) <sub>4</sub>                             | SnO <sub>2</sub>                                                        | Cu <sup>2+</sup> , Pb <sup>2+</sup> , As(III)                                                                                |
| Pb2*                | PbSO <sub>4</sub>                                      | PbSO <sub>4</sub>                                                       | Ca2+, Sr2+, Ba2+, Hg2+, Ag+, HCl, HNO3                                                                                       |
| NH;                 | $NH_4B(C_6H_4)_4$                                      | NH <sub>4</sub> B(C <sub>6</sub> H <sub>5</sub> ) <sub>4</sub>          | K+, Rb+, Cs+                                                                                                                 |
| CI-                 | AgCl                                                   | AgCl                                                                    | Br-, I-, SCN-, S2-, S2O3-, CN-                                                                                               |
| Br-                 | AgBr                                                   | AgBr                                                                    | CI-, I-, SCN-, S2-, S2O3-, CN-                                                                                               |
| 1-                  | AgI                                                    | AgI                                                                     | Cl-, Br-, SCN-, S2-, S2O3-, CN-                                                                                              |
| SCN-                | CuSCN                                                  | CuSCN                                                                   | NH <sub>4</sub> , Pb <sup>2+</sup> , Hg <sup>2+</sup> , Ag <sup>+</sup>                                                      |
| CN-                 | AgCN                                                   | AgCN                                                                    | Cl-, Br-, I-, SCN-, S2-, S2O3-                                                                                               |
| F-                  | (C <sub>4</sub> H <sub>4</sub> ) <sub>3</sub> SnF      | $(C_6H_5)_3SnF$                                                         | Many metals (except alkali metals), SiO4-, CO3-                                                                              |
| CIO                 | KCIO4                                                  | KCIO <sub>4</sub>                                                       | N " N                                                                                                                        |
| SO2-                | BaSO <sub>4</sub>                                      | BaSO <sub>4</sub>                                                       | Na+, K+, Li+, Ca2+, Al3+, Cr3+, Fe3+, Sr2+, Pb2+, NO <sub>1</sub>                                                            |
| PO3-                | Mg(NH <sub>4</sub> )PO <sub>4</sub> ·6H <sub>2</sub> O | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub>                           | Many metals except Na+, K+                                                                                                   |
| NO <sub>5</sub>     | Nitron nitrate                                         | Nitron nitrate                                                          | ClO <sub>4</sub> , I-, SCN-, CrO <sub>4</sub> -, ClO <sub>3</sub> -, NO <sub>2</sub> -, Br-, C <sub>2</sub> O <sub>4</sub> - |
| CO3-                | CO2 (by acidification)                                 | CO <sub>2</sub>                                                         | (The liberated CO2 is trapped with Ascarite and weighed)                                                                     |

#### Calculations in Gravimetric Analysis

#### **Example**

A mixture containing only  $Al_2O_3$  (FM 101.96) and  $Fe_2O_3$  (FM 159.69) weighs 2.019 g. When heated under a stream of  $H_2$ ,  $Al_2O_3$  is unchanged, but  $Fe_2O_3$  is converted into metallic Fe plus  $H_2O$  (g).

If the residue weighs 1.774 g, what is the weight percent of Fe<sub>2</sub>O<sub>3</sub> in the original mixture?